000 02118cam a2200325 a 4500
001 15581039
003 KPTM
005 20150318034005.0
008 090109s2009 paua b 001 0 eng
010 _a2008056149
020 _a9780898716757
040 _cKPTM
050 0 0 _aQA76.9.D343
_bK151 2009
084 _aST 530
_2rvk
100 1 _aKamath, Chandrika.
245 1 0 _aScientific data mining :
_ba practical perspective /
_cChandrika Kamath.
260 _aPhiladelphia :
_bSociety for Industrial and Applied Mathematics,
_cc2009.
300 _axviii, 286 p. :
_bill. ;
_c26 cm.
504 _aIncludes bibliographical references (p. 235-277) and index.
505 0 _aData mining in science and engineering -- Common themes in mining scientific data -- The scientific data mining process -- Reducing the size of the data -- Fusing different data modalities -- Enhancing image data -- Finding objects in the data -- Extracting features describing the objects -- Reducing the dimension of the data -- Finding patterns in the data -- Visualizing the data and validating the results -- Scientific data mining systems -- Lessons learned, challenges, and opportunities.
520 8 _aChandrika Kamath describes how techniques from the multi-disciplinary field of data mining can be used to address the modern problem of data overload in science and engineering domains. Starting with a survey of analysis problems in different applications, it identifies the common themes across these domains.
650 0 _aData mining.
650 0 _aScience
_xDatabases
650 0 _aEngineering
_xDatabases.
856 4 1 _3Table of contents only
_uhttp://www.loc.gov/catdir/enhancements/fy0916/2008056149-t.html
856 4 2 _3Publisher description
_uhttp://www.loc.gov/catdir/enhancements/fy0916/2008056149-d.html
856 4 2 _3Contributor biographical information
_uhttp://www.loc.gov/catdir/enhancements/fy0916/2008056149-b.html
856 4 1 _3Table of contents
_uhttp://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=017363421&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
942 _2lcc
_cBK
999 _c3149
_d3149